In the 1994 Northridge, Calif. earthquake, it is estimated that as much as 70% of the damage to buildings that survived structurally was caused by the failure of the HVAC&R, plumbing, fire protection and electrical systems. But this does not have to happen. The U.S. building codes have minimum requirements for the design and restraint of HVAC, plumbing, fire protection and electrical systems that are considered non-structural components within the building.

Building Codes

Building codes were thoroughly covered in April’s article “Earthquake: New Codes Provide Tools, But We Need to Ensure Compliance,” by James A. Carlson, P.E. and Robert E.

About the Author

James R. Tauby, P.E., is the chief executive engineer for Mason Industries and is a past chair of ASHRAE’s Technical Committee 2.7, Seismic and Wind Restraint Design. He is a distinguished lecturer for ASHRAE on the topics of seismic restraint and vibration isolation. He was the lead author of ASHRAE’s “A Practical Guide to Seismic Restraint.”
Simmons, P.E. The design of the seismic restraints does take into account the building occupancy, location based on the U.S. Geological Survey, system ruggedness and location within the structure in relation to intermediate floors as well as the roof.

Practical Guide to Seismic Restraint

ASHRAE published A Practical Guide to Seismic Restraint in 1999. This manual covers all of the HVAC&R systems in a building. It also includes chapters on building codes, specifications, housekeeping pads, bomb blasts, residential equipment, equipment fragility levels and a chapter on the basics of earthquakes. The manual is available at www.ashrae.org/bookstore. A revision of the manual is planned for publication later this year. Up-to-date information on codes is in the 2011 ASHRAE Handbook—HVAC Applications, Chapter 55, (also 2007 ASHRAE Handbook—HVAC Applications, Chapter 54).

Specifications

The most important way to ensure a project is constructed safely is to have a complete specification covering seismic restraint of piping, ductwork, electrical supply systems and all mechanical and electrical equipment. This requires a properly prepared set of construction documents, a detailed review by a professional, and approval of shop drawings and field enforcement. Seismic restraints should be looked at as an engineered system, not as a selection of hardware from a catalog. Calculations or prior testing must prove that the restraints are more than adequate for the project.
Floor-Mounted Equipment

Floor-mounted equipment must be secured to the structural floor. Attachments must be designed and installed properly to achieve at least the specified minimums. Attachment methods include bolting directly to the slab, attaching to the slab by way of a combination of seismic restraint/vibration isolator, or by the use of vibration isolators and separate seismic snubbers. When equipment is bolted directly, the back and forth hammering movement during a seismic event can cause the bolts to shear off because of the space between the bolt and the bolt hole. See Figure 1, Page 21, for three options to avoid this problem.

For equipment installed on the roof and subject to wind loads, the equipment restraint system shall be designed for the higher of the two, seismic or wind.

Figures 2 and 3, Page 21, show typical equipment restrained with separate isolators and seismic snubbers.

Housekeeping Pads

One of the most overlooked systems in the building are the housekeeping pads. Housekeeping pads provide the load transfer between equipment and the structure. Look at the photo at the beginning of the article. The pump was attached to the housekeeping pad inadequately. In addition, the pad was not anchored to the structural slab, nor was it adequately reinforced. This allowed the slab to move and break, leaving this system non-workable. See Figure 4 for typical proper reinforcement in the housekeeping pad and anchorage of the pad.

Figure 4: Housekeeping pad anchorage.

Figure 5: Flexible cable bracing for suspended equipment.

Figure 6: Rigid bracing for suspended equipment.
WITH CITY MULTI, YOU NEVER HAVE TO LEAVE YOUR COMFORT ZONE.

SAVE ON TOTAL INSTALLED COSTS WITH OUR INNOVATIVE VRF TECHNOLOGY:

DESIGN & STYLE
A variety of indoor unit styles, such as ceiling-concealed, wall-mounted, floor-mounted, and many more, allows application for any space.

HYDRA-DAN
Converts recovered energy from indoor units to provide hot water for sanitary use and radiant heating.

H² TECHNOLOGY
Provides excellent heating performance even when ambient temperatures reach -25°C and beyond.

EASY INSTALLATION
Saves installation time and materials by using 2 pipes instead of 3. Total system pipe lengths of up to 3,000 ft allow for amazing design flexibility.

GEOTHERMAL-READY
Uses the earth’s natural solar energy collection with a highly energy-efficient ground-source heat pump.

www.intelligentHVAC.com

www.info.hotims.com/33864-49
Suspended Equipment
All suspended equipment must be braced with either flexible cable or with rigid steel. Vibration isolated equipment must use flexible cables, to avoid shorting out the isolation. See Figures 5 and 6, Page 22, for typical suspended equipment bracing.

Suspended Piping
All piping requires seismic bracing, down to a minimum size as specified. Like suspended equipment, bracing can be either flexible cable or rigid steel. The weak points in these systems are where the piping attaches to equipment and valves.

Where piping attaches to equipment, flexible connections will accept the differential motion between piping attached to the ceiling and equipment attached to the floor. These flexible connections must be of a type and size to handle the calculated movements.

Piping systems can be high-deformability materials that are welded or brazed, high or limited deformability material with compression or grooved...
RIGHT NOW

An engineer is specifying an HVAC system to keep a school comfortable throughout the day whether it’s gym time or study time.

Copeland Scroll Digital™ compressors deliver precise temperature and humidity control to match varying needs.

Whether the students are playing in the gym or working in the classroom, Copeland Scroll Digital keeps everyone comfortable with precise temperature and humidity control within 0.5°F. In addition to comfort, its award-winning innovative design adjusts capacity from 10 to 100 percent, providing energy savings through efficient load matching. Find out more by visiting EmersonClimate.com/DigitalSchool

The Emerson logo is a trademark and a service mark of Emerson Electric Co. ©2010 Emerson Electric Company.
couplings, threaded and bonded, or low deformability such as cast iron, glass, non-ductile plastic, etc. Welded pipe is the most rugged, and can accept higher seismic loads. The high or low deformability piping using grooved couplings, etc., is next, but at lower load ratings. Low deformability piping ac-

Figure 9 (top left): Flexible cable bracing for ductwork. Figure 10 (top right): Rigid bracing for ductwork. Figure 11 (left): Four methods for attaching to concrete.
I Am the New Standard in Building Specifications

A web-based Building Management solution providing seamless and intelligent integration of HVAC, Lighting, Access Control, CCTV, Energy Management, and other building systems; and a common platform for BACnet®, LonWorks® and other protocols.

That’s why I specify Distech Controls.

www.distech-controls.com/engineers 1-450-444-9898 or toll free 1-800-404-0043

www.info.hotims.com/33864-23
Vibration-isolated ductwork requires the use of flexible cable. Ductwork made from high-deformability materials that are welded or brazed can accept the most load. Ductwork made from high or limited deformability materials that are not welded or brazed accept lower loads than the welded ductwork. The low deformability ductwork such as cast iron, glass, or non-ductile plastic can handle only very low seismic loadings. See Figures 7 and 8, Page 24, for piping restrained with flexible cable and rigid bracing. Flexible cable have to be used on systems that are vibration isolated.

Ductwork

Ductwork requires bracing with very few exceptions. It can be braced with either flexible cable or steel sections.

Connections

All seismic restraints must be rigidly attached to the building structure. This is done with the use of post installed anchors including wedge, screw or adhesive. The only anchor not post installed is the embedded bolt. See Figure 11, Page 26, for details of typical connections.

Anchors must have certifiable allowable seismic loads according to the building code. This testing is done in different strengths of cracked and uncracked concrete, and some are also tested in the underside of concrete decks using a minimum of 20 gage steel decking. Anchors must be as per ACI 318 and certified by an accredited agency such as the International Code Council Evaluation Service (ICC-ES).

If the connection is to wood, then lag screws can be used for the attachment of restraints. Lag screw connection design can be found in the “National Specification for Wood Construction,” as published by the American Wood Council. The design is dependent on the diameter, length of penetration, screw material, specific gravity of the wood, edge and end distances and screw spacing.

If the connection is to steel, then the bolts should be designed in accordance with the American Institute of Steel Construction’s “Manual of Steel Construction” 9th edition. Steel bolts are allowed a one-third increase for temporary seismic or wind load.
Efficiency wins in all sizes.

Introducing the Goulds Pumps

e-SV™ Series:

energy efficient, economical and easy-to-install stainless steel multi-stage pumps.

When it comes to efficiency, you need the top performer no matter what the size. Our e-SV pumps deliver superior efficiency for the life of the pump, whether the application is large or small. Thanks to a unique combination of new hydraulic design and higher efficiency motor, the e-SV delivers lower overall life-cycle costs and superior efficiency compared to most pumps available today.

- Optimized hydraulic design results in superior boosting performance, efficiency and NPSHr levels.
- All stainless-steel construction permits NSF certification.
- Expanded line of pump sizes for wide range of applications.
- Patented i-ALERT™ monitor continuously measures vibration to support optimum performance. Available on pumps 10HP and above.
- New design eliminates need to remove motor, reducing repair time by up to 50 percent.

With e-SV pumps you’ve got a winning choice no matter what size you need.

Find out more at www.goulds.com